Markscheme

May 2016

Further mathematics

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {™ }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding M mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final A1 in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 .$. (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:
$f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))$
A1

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.
10 Accuracy of Answers
Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) the graph is not Eulerian
because the graph contains vertices of odd degree
(b) the graph is Hamiltonian
(c) correctly start to use Kruskal's algorithm DE(1)
$\mathrm{BC}(2), \mathrm{FG}(2)$ or vice-versa
$\mathrm{DC}(3), \mathrm{AC}(3)$ or vice-versa
$\mathrm{GH}(4)$ (rejecting AB) A1
$\mathrm{DF}(5)$ or $\mathrm{EG}(5)$ (rejecting BD) A1
total weight $=20 \quad$ A1
(d) the minimum weight spanning tree can be traversed twice
so upper bound is $2 \times 20=40$
(e) the Hamiltonian cycle found in (b) is a closed walk visiting every vertex and hence can be applied here
weight $=39$

A1
[2 marks]
2. (a) attempt to apply l'Hôpital's rule
$\lim _{x \rightarrow \infty} \frac{3 x^{2}}{\mathrm{e}^{x}}$
then $\lim _{x \rightarrow \infty} \frac{6 x}{\mathrm{e}^{x}}$
then $\lim _{x \rightarrow \infty} \frac{6}{\mathrm{e}^{x}}$
A1
$=0$

AG
continued...

Question 2 continued
(b) (i) $\mathrm{E}\left(X^{2}\right)=\lim _{R \rightarrow \infty} \int_{0}^{R} x^{3} \mathrm{e}^{-x} \mathrm{~d} x$
attempt at integration by parts
the integral $=\left[-x^{3} \mathrm{e}^{-x}\right]_{0}^{R}+\int_{0}^{R} 3 x^{2} \mathrm{e}^{-x} \mathrm{~d} x$
$=\left[-x^{3} \mathrm{e}^{-x}\right]_{0}^{R}+\left[-3 x^{2} \mathrm{e}^{-x}\right]_{0}^{R}+\int_{0}^{R} 6 x \mathrm{e}^{-x} \mathrm{~d} x$
$=\left[-x^{3} \mathrm{e}^{-x}\right]_{0}^{R}+\left[-3 x^{2} \mathrm{e}^{-x}\right]_{0}^{R}+\left[-6 x \mathrm{e}^{-x}\right]_{0}^{R}+\int_{0}^{R} 6 \mathrm{e}^{-x} \mathrm{~d} x$
A1
$=\left[-x^{3} \mathrm{e}^{-x}\right]_{0}^{R}+\left[-3 x^{2} \mathrm{e}^{-x}\right]_{0}^{R}+\left[-6 x \mathrm{e}^{-x}\right]_{0}^{R}+\left[-6 \mathrm{e}^{-x}\right]_{0}^{R}$
A1
$=6$ when $R \rightarrow \infty$
R1
(ii) $\mathrm{E}(X)=2$ A1
$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=6-2^{2} \quad$ M1
$=2$
AG
[10 marks]
(c) if a random sample of size n is taken from any distribution X, with $\mathrm{E}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$, then, for large \boldsymbol{n},
the sample mean \bar{X} has approximate distribution $\mathrm{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ A1
[2 marks]
(d) $\bar{X} \sim \mathrm{~N}\left(2, \frac{2}{50}=(0.2)^{2}\right)$
$\mathrm{P}(\bar{X}<2.3)=(\mathrm{P}(Z<1.5))=0.933$
(A1)
3. (a) METHOD 1
attempt to exploit the fact that the normal to a tangent passes through the centre (a, b)

EITHER

equation of normal is $y-4=-\frac{1}{3}(x-3)$
obtain $a+3 b=15$
attempt to exploit the fact that a circle has a constant radius: (M1)
obtain $(1-a)^{2}+(2-b)^{2}=(3-a)^{2}+(4-b)^{2} \quad$ A1
leading to $a+b=5 \quad$ A1
centre is $(0,5)$
(M1)A1
radius $=\sqrt{1^{2}+3^{2}}=\sqrt{10}$
OR
gradient of normal $=-\frac{1}{3}$
general point on normal $=(3-3 \lambda, 4+\lambda)$
this point is equidistant from $(1,2)$ and $(3,4) \quad$ M1
if $10 \lambda^{2}=(2-3 \lambda)^{2}+(2+\lambda)^{2}$
$10 \lambda^{2}=4-12 \lambda+9 \lambda^{2}+4+4 \lambda+\lambda^{2}$
$\lambda=1 \quad$ A1
centre is $(0,5) \quad$ A1
radius $=\sqrt{10 \lambda}=\sqrt{10} \quad \boldsymbol{A 1}$

METHOD 2

attempt to substitute two points in the equation of a circle
$(1-h)^{2}+(2-k)^{2}=r^{2},(3-h)^{2}+(4-k)^{2}=r^{2}$
Note: The A1 is for the two LHSs, which may be seen equated.
equate or subtract the equations obtain $h+k=5$ or equivalent
attempt to differentiate the circle equation implicitly
obtain $2(x-h)+2(y-k) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Note: Similarly, M1A1 if direct differentiation is used.
substitute $(3,4)$ and gradient $=3$ to obtain $h+3 k=15$
obtain centre $=(0,5)$
radius $=\sqrt{10}$

Question 3 continued
(b) equation of circle is $x^{2}+(y-5)^{2}=10$
(c) the equation of the chord is $3 x-y=$
attempt to solve the equation for the chord and that for the circle simultaneously
for example $x^{2}+(3 x-1-5)^{2}=10 \quad$ A1
coordinates of the second point are $\left(\frac{13}{5}, \frac{34}{5}\right)$
4. (a) attempt to separate the variables

M1
$\int y \frac{\mathrm{~d} y}{\mathrm{~d} x} \mathrm{~d} x=\int x \mathrm{~d} x$
Note: Accept $\int y \mathrm{~d} y=\int x \mathrm{~d} x$.
obtain $\frac{1}{2} y^{2}=\frac{1}{2} x^{2}+$ constant $\left(\Rightarrow y^{2}-x^{2}=c\right)$
(b) (i) substitute the coordinates for both points
$(\pm \sqrt{2})^{2}-1^{2}=1$
obtain $y^{2}-x^{2}=1$ or equivalent
(ii)

Note: A1 for general shape including two branches and symmetry; A1 for values of the intercepts.
(rectangular) hyperbola
(c) (i) $y^{2}-x^{2}=0$

A1

(ii) the two straight lines $y= \pm x$

A1
form the asymptotes to the hyperbola found above, or equivalent

A1A1
mark

Question 4 continued
(d) (i) the equation is homogeneous, so attempt to substitute $y=v x$
as a first step write $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} v}{\mathrm{~d} x}+v$
then $x \frac{\mathrm{~d} v}{\mathrm{~d} x}+v=\frac{1}{v}+v$
(A1)
attempt to solve the resulting separable equation
$\int v \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x$
obtain $\frac{1}{2} v^{2}=\ln |x|+$ constant $\Rightarrow y^{2}=2 x^{2} \ln |x|+c x^{2}$
A1
(ii) substituting the coordinates
(M1)
obtain $c=2 \Rightarrow y^{2}=2 x^{2} \ln |x|+2 x^{2}$ A1
(iii)

(iv) since $y^{2}>0$ and $x^{2} \neq 0$ R1
$\ln |x|>-1 \Rightarrow|x|>\mathrm{e}^{-1}$ A1
$a=\mathrm{e}^{-1}$

Note: The R1 may be awarded for a correct reason leading to subsequent correct work.
5. (a) (i) the auxiliary equation is $2 r^{2}-3 r+1=0$
with roots $r=1, \frac{1}{2}$ A1
the general solution of the difference equation is
$u_{n}=A+B\left(\frac{1}{2}\right)^{n}$
imposing the initial conditions M1
$A+\frac{B}{2}=1, A+\frac{B}{4}=2$
obtain $u_{n}=3-4\left(\frac{1}{2}\right)^{n}$
(ii) as $n \rightarrow \infty,\left(\frac{1}{2}\right)^{n} \rightarrow 0$
$u_{n} \rightarrow 3$
A1
hence the sequence is convergent
AG
[9 marks]
(b) assume $v_{n} \rightarrow L$
taking the limit of both sides of the recurrence relation M1
$2 L-3 L+L(=0)=1$
A1
the contradiction shows that the sequence diverges
AG
[3 marks]
(c) (i) the auxiliary equation $r^{2}-2 r+4=0$

A1
has roots $1 \pm i \sqrt{3}$

METHOD 1

these can be re-expressed as $2\left(\cos \left(\frac{\pi}{3}\right) \pm i \sin \left(\frac{\pi}{3}\right)\right)$
the general solution is
$w_{n}=2^{n}\left(A \cos \left(\frac{n \pi}{3}\right)+B \sin \left(\frac{n \pi}{3}\right)\right)$
imposing the initial conditions
$A=0,2 B \frac{\sqrt{3}}{2}=2$
obtain $w_{n}=\frac{2^{n+1}}{\sqrt{3}} \sin \left(\frac{n \pi}{3}\right)$
continued...

Question 5 continued

METHOD 2

the general solution is

$$
w_{n}=A(1+\mathrm{i} \sqrt{3})^{n}+B(1-\mathrm{i} \sqrt{3})^{n}
$$

imposing the initial conditions
$A+B=0, A+B+\mathrm{i} \sqrt{3}(A-B)=2$
obtain $w_{n}=\frac{1}{\mathrm{i} \sqrt{3}}(1+\mathrm{i} \sqrt{3})^{n}-\frac{1}{\mathrm{i} \sqrt{3}}(1-\mathrm{i} \sqrt{3})^{n}$
(ii) METHOD 1

$$
w_{3 n}=\frac{2^{3 n+1}}{\sqrt{3}} \sin (n \pi)
$$

$=0$

METHOD 2

$$
\begin{aligned}
& w_{3 n}=\frac{1}{\mathrm{i} \sqrt{3}}(1+\mathrm{i} \sqrt{3})^{3 n}-\frac{1}{\mathrm{i} \sqrt{3}}(1-\mathrm{i} \sqrt{3})^{3 n} \\
& =\frac{1}{\mathrm{i} \sqrt{3}}(-8)^{n}-\frac{1}{\mathrm{i} \sqrt{3}}(-8)^{n} \\
& =0
\end{aligned}
$$

$R 1$
AG
[7 marks]

Total [19 marks]

6. (a) $(a+b \sqrt{2}) \times(c+d \sqrt{2})=a c+b c \sqrt{2}+a d \sqrt{2}+2 b d$ M1
$=a c+2 b d+(b c+a d) \sqrt{2} \in J$
A1
hence J is closed
AG
Note: Award MOAO if the general element is squared.
(b) the identity is $1(a=1, b=0)$

A1
[1 mark]
continued...

Question 6 continued

(c) \quad (i) $\quad(1-\sqrt{2}) \times a=1$

$$
\begin{array}{ll}
a=\frac{1}{1-\sqrt{2}} \\
=\frac{1+\sqrt{2}}{(1-\sqrt{2})(1+\sqrt{2})}=\frac{1+\sqrt{2}}{-1}=-1-\sqrt{2} & \text { M1 } \\
\text { hence } 1-\sqrt{2} \text { has an inverse in } J & \boldsymbol{A 1}
\end{array}
$$

(ii) $\quad(2+4 \sqrt{2}) \times a=1$

$$
\begin{aligned}
& a=\frac{1}{2+4 \sqrt{2}} \\
& =\frac{2-4 \sqrt{2}}{(2-4 \sqrt{2})(2+4 \sqrt{2})}=\frac{2-4 \sqrt{2}}{-28}
\end{aligned}
$$

which does not belong to $J \quad \boldsymbol{R 1}$
hence $2+4 \sqrt{2}$ has no inverse in J
(d) multiplication is associative

A1
let g_{1} and g_{2} belong to G, then g_{1}^{-1}, g_{2}^{-1} and $g_{2}^{-1} g_{1}^{-1}$ belong to $J \quad$ M1
then $\left(g_{1} g_{2}\right) \times\left(g_{2}^{-1} g_{1}^{-1}\right)=1 \times 1=1$
A1
so $g_{1} g_{2}$ has inverse $g_{2}^{-1} g_{1}^{-1}$ in $J \Rightarrow G$ is closed A1
G contains the identity A1
G possesses inverses A1
G contains all integral powers of $1-\sqrt{2} \quad \boldsymbol{A 1}$
hence G is an infinite group AG
[7 marks]
(e) (i) $(a+b \sqrt{2})^{-1}=\frac{1}{a+b \sqrt{2}}=\frac{1}{a+b \sqrt{2}} \times \frac{a-b \sqrt{2}}{a-b \sqrt{2}}$

$$
=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2}
$$

(ii) above number belongs to J and $a^{2}-2 b^{2} \in \mathbb{Z}$
implies $a^{2}-2 b^{2}$ divides exactly into a and b
(iii) since $\operatorname{gcd}(a, b)=1$

$$
a^{2}-2 b^{2}= \pm 1
$$

7. (a) (i) $\frac{\mathrm{d} f_{n}(x)}{\mathrm{d} x}=n \sec ^{n-1}(x) \sec (x) \tan (x)$

$$
=n g_{n}(x)
$$

(ii) $\frac{\mathrm{d} g_{n}(x)}{\mathrm{d} x}=\frac{\mathrm{d} f_{n}(x)}{\mathrm{d} x} \tan (x)+f_{n}(x) \sec ^{2}(x)$

$$
n g_{n}(x) \tan (x)+f_{n+2}(x) \text { or equivalent }
$$

$n f_{n}(x) \tan ^{2}(x)+f_{n+2}(x)$ or equivalent A1
$=(n+1) f_{n+2}(x)-n f_{n}(x)$
Note: Award M1A1 for the correct differentiation of a product and $\boldsymbol{A 1}$ for an intermediate result clearly leading to the $\boldsymbol{A G}$.
(b) (i) $\quad f_{5}(0)=1$

A1
$\frac{\mathrm{d} f_{5}}{\mathrm{~d} x}(0)=5 g_{5}(0)=0$ A1
$\frac{\mathrm{d}^{2} f_{5}}{\mathrm{~d} x^{2}}(0)=5\left(6 f_{7}(0)-5 f_{5}(0)\right)=5$ A1
$\frac{\mathrm{d}^{3} f_{5}}{\mathrm{~d} x^{3}}=30 \frac{\mathrm{~d} f_{7}}{\mathrm{~d} x}-25 \frac{\mathrm{~d} f_{5}}{\mathrm{~d} x}$ M1
hence $\frac{\mathrm{d}^{3} f_{5}}{\mathrm{~d} x^{3}}(0)=30 \times 0-25 \times 0=0$ A1
$\frac{\mathrm{d}^{4} f_{5}}{\mathrm{~d} x^{4}}=30 \frac{\mathrm{~d}^{2} f_{7}}{\mathrm{~d} x^{2}}-25 \frac{\mathrm{~d}^{2} f_{5}}{\mathrm{~d} x^{2}}=210\left(8 f_{9}-7 f_{7}\right)-25 \frac{\mathrm{~d}^{2} f_{5}}{\mathrm{~d} x^{2}}$
hence $\frac{\mathrm{d}^{4} f_{5}}{\mathrm{~d} x^{4}}(0)=210-125=85$
hence $f_{5}(x) \approx 1+\frac{5}{2} x^{2}+\frac{85}{24} x^{4}$
AG
(ii) each derivative of $f_{m}(x)$ is a sum of terms of the form $\mathrm{Asec}^{p}(x) \tan ^{q}(x)$ A1
where $\mathrm{A} \geq 0$
when $x=0$ is substituted the result is the sum of positive and/or zero terms
(iii) since the full series represents $f_{5}(x)$, the truncated series is a lower bound (or some equivalent statement)
hence $\sec ^{5}(0.1)>1+\frac{5}{2} 0.1^{2}+\frac{85}{24} 0.1^{4}$
$=1.025354$
>1.02535
8. (a) (i) 1 has n possible new positions; 2 then has $n-1$ possible new positions...
n has only one possible new position
the number of possible permutations is $n \times(n-1) \times \ldots \times 2 \times 1$
$=n$!
Note: Give no credit for simply stating that the number of permutations is n !
(ii) $\quad(1)(2)(3) ;(12)(3) ;(13)(2) ;(23)(1) ;(123) ;(132)$

Notes: A1 for 4 or 5 correct.
If single bracket terms are missing, do not penalize.
Accept e in place of the identity.
(iii) attempt to compare $\pi_{1} \circ \pi_{2}$ with $\pi_{2} \circ \pi_{1}$ for two permutations M1
for example $\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right) \quad$ A1
but $\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right) \quad \boldsymbol{A 1}$
hence S_{3} is not Abelian AG
(iv) S_{3} is a subgroup of S_{n}, $\quad \boldsymbol{R 1}$
so S_{n} contains non-commuting elements R1
$\Rightarrow S_{n}$ is not Abelian for $n \geq 3$ AG
(b) (i) $\quad \boldsymbol{M}_{1}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), \boldsymbol{M}_{2}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(ii) $\quad \boldsymbol{M}_{1} \boldsymbol{M}_{2}=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
this represents (132)
(iii) by, for example, interchanging a pair of rows
$\operatorname{det}\left(\boldsymbol{M}_{1}\right)=\operatorname{det}\left(\boldsymbol{M}_{2}\right)=-1$
then $\operatorname{det}\left(\boldsymbol{M}_{1} \boldsymbol{M}_{2}\right)=(-1) \times(-1)=1$

A1
[7 marks]
continued..

Question 8 continued
(c) (i) let $\mathrm{P}(n)$ be the proposition that
$(1 n)(1 n-1)(1 n-2) \ldots(12)=(123 \ldots n) n \in \mathbb{Z}^{+}$
the statement that $\mathrm{P}(2)$ is true eg $(12)=(12) \quad$ A1
assume $\mathrm{P}(k)$ is true for some $k \quad$ M1
consider $(1 k+1)(1 k)(1 k-1)(1 k-2) \ldots(12)$
$=(1 k+1)(123 \ldots k)$
then the composite permutation has the following effect on the first $k+1$ integers: $1 \rightarrow 2,2 \rightarrow 3 \ldots k-1 \rightarrow k, k \rightarrow 1 \rightarrow k+1, k+1 \rightarrow 1$A1
this is ($123 \ldots k k+1$) A1
hence the assertion is true by induction AG
(ii) every permutation is a product of cycles R1
generalizing the result in (i) R1
every cycle is a product of cycles of length 2 R1hence every permutation can be written as a product of cycles oflength 2

